Dark Energy: Observations

Gil Holder

Outline

- How dark energy affects cosmological observables
 - a(t) => distances(z), growth of structure(z)
- Dark energy probes
 - cosmic microwave background
 - supernovae (type IA)
 - galaxy clustering
 - weak gravitational lensing
 - galaxy cluster number counts

Warning: not a comprehensive list of experiments!

Energy Densities in Cosmology

$$H = H_o \sqrt{\Omega_m (1+z)^3 + \Omega_x (1+z)^{3(1+w)}}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$d(\ln a)/dt \qquad \text{matter} \qquad \text{dark energy}$$

The expanding universe

- spatially flat FRW: $dt^2=a^2(t) dr^2$
- mapping between comoving distance between points and time depends on expansion history

Dark Energy from Distances

 distance sensitive to expansion rate

$$H = H_o \sqrt{\Omega_m (1+z)^3 + \Omega_x (1+z)^{3(1+w)}}$$

$$d_{L} = c(1+z) \int_{0}^{z} dz' H^{-1}(z')$$

billion light years

Gravity at work

simulated density contrast at different times

simulations carried out by the Virgo Supercomputing Consortium using computers based at Computing Centre of the Max-Planck Society in Garching and at the Edinburgh Parallel Computing Centre. The data are publicly available at www.mpa-garching.mpg.de/NumCos

$$\ddot{\delta} + 2H(z)\dot{\delta} = 4\pi G \rho_o \delta$$

Dark Energy Studies with Ω_m(z) Growth Tests

 Growth of structure sensitive to expansion rate

0.6 $\hat{w} = -1/3$ 0.2 $\delta(z)$ Amplitude of linear density fluctuations 0.1 10 (1+z)

$$H(z) = H_o \sqrt{\Omega_m (1+z)^3 + \Omega_x (1+z)^{3(1+w)}}$$

Amplitude of density fluctuations in linear theory:

$$\ddot{\delta} + 2H(z)\dot{\delta} = 4\pi G \rho_o \delta$$

8.0

Characterizing Dark Energy

from Dark Energy Task Force report

Cosmic Microwave
Background

 acoustic scale (in cm) set by physics unrelated to dark energy

- –angular scale depends on expansion history
- provides
 normalization of
 fluctuation amplitude
 at z~1100

CMB Power Spectrum

SPT power spectra: Ryan Keisler; Christian Reichardt; Erik Shirokoff

Characterizing Dark Energy

Exploding stars: Supernovae

It appears that some supernovae (IA) all have the same intrinsic brightness

> distant (Type IA)

nearby (Type II)

Supernova!

Host Galaxies of Distant Supernovae

HST - ACS/WFC

NASA, ESA, and A. Riess (STScI)

STScl-PRC06-52

Standardized Candles

SNe Hubble Diagram

Forecast & Wish List for SNe

- need more SNe both at low-z and at z>1
 - –population studies to ensure that there isn't some evolution in either each SN or in the demographics of the SN population
- more colors would be nice (IR, UV?)
 - -space-based? (WFIRST)
- a strong theoretical understanding of spectra & light curves would be reassuring

Characterizing Dark Energy

BAO

Baryon
 Acoustic
 Oscillations
 leave
 imprint in
 matter
 distribution

Eisenstein, Seo & White 2006

Radius (Mpc)

Radius (Mpc)

Galaxy Clustering

- galaxies are clustered
 - amplitude a bit tricky to use because galaxies live at peaks of density field (``biased'')
- BAO signature leads to boosted clustering on acoustic scale $(\sim 100 h^{-1}Mpc)$

Baryon Oscillations imprinted in Galaxy Clustering

first detected in
 Eisenstein et al
 2005 using SDSS
 LRG sample
 (extends to z~0.5)

 actually detected in angular & radial clustering

standardruler

The BAO Hubble Diagram

BAO
 measurements
 at different z
 allow a test of
 the distance redshift
 relation

The BAO Hubble Diagram

• BAO

measurements

at different z

allow a test of allow a test of redshift

relation

Forecast & Wish List for BAO

- minimal (but not completely negligible) nonlinear physics
- mainly need more volume
 - I00 Mpc/h scale + I% precision requires at least a few Gpc on a side surveys (cH₀⁻¹~3 Gpc/h)
- lots of ideas & new surveys
 - e.g.., quasar absorption lines/optical galaxies (BigBoss); CHIME (21cm intensity mapping)

just my personal favorites, no offense to the <u>many</u> others...

Characterizing Dark Energy

Gravitational Lensing

 Distortion, multiple imaging of distant sources

http://imagine.gsfc.nasa.gov/docs/features/news/grav_lens.html

Gravitational Lensing

 Distortion, multiple imaging of distant sources

 amount of lensing depends on source/ lens/observer geometry (distances)

Weak Lensing

- gravitational potentials distort shapes by stretching, squeezing, shearing
- typical cosmic shearsignal ~1%

Galaxies are not round

 individual galaxies have complex morphologies

solution: average over many galaxies

Cosmic Shear Measurements

- very strong
 detections are now
 being made
- e.g., CFHTLS has published results from 57 sq deg of single-band groundbased imaging

Weak lensing tomography

- using source galaxies at different redshifts allows one to reconstruct the 3D mass distribution
- mass, not galaxy, density means you can measure the time evolution of the density fluctuations
- recent results using Hubble over ~I sq deg

Massey et al

Weak lensing tomography

- using source galaxies at different redshifts allows one to reconstruct the 3D mass distribution
- mass, not galaxy, density means you can measure the time evolution of the density fluctuations

Schrabback et al 2010

CMB Lensing

Photons get shifted

$$T^{L}(\hat{\mathbf{n}}) = T^{U}(\hat{\mathbf{n}} + \nabla \phi(\hat{\mathbf{n}}))$$

- CMB is a unique source for lensing
 - Gaussian, with well-understood power spectrum (contains all info)
 - At redshift which is (a) unique,
 (b) known, and (c) highest

strong detections now exist

Forecast & Wish List for lensing

- cosmic shear requires large areas, good redshift discrimination, good telescope understanding
 - space-based may be easier (high resolution, broad wavelength coverage, very dark sky)
- large surveys coming soon: I 000s of square degrees of deep imaging (DES, Pan-Starrs, ...,LSST)

Characterizing Dark Energy

Number counts of rare objects

 simulated 2x2 degree map showing projected thermal pressure

 number of most massive objects highly sensitive to amplitude of density fluctuations

amplitude -10% +10% +20%

ref fluctuation

Cluster dN/dz

First SPT Cosmological result (Vanderlinde et al 2010), used SPT's first 21 clusters to constrain cosmology

Constraints on dark energy from X-ray selected galaxy clusters

- Vikhlinin et al 2009 (see also Mantz et al)
- ~60 clusters at z<0.7

Forecast & Wish List for galaxy clusters

- need larger samples: I% requires 1000s of clusters just to beat Poisson noise: eROSITA (X-ray), DES (optical)
- need strong validation campaign to ensure the sample properties are well-understood (i.e., make sure that the number of objects is changing, not the type of object that is being found)

Characterizing Dark Energy

Summary

- dark energy is being observed in many different ways
 - first discovered through supernovae, but many independent cross-checks!
- distances & structure formation are two fundamentally different tests
- all methods have strengths and weaknesses but great promise for figuring out dark energy